Assessment Schedule – 2006 Calculus: Manipulate real and complex numbers, and solve equations (90638) Evidence Statement

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
Achievement	Manipulate real and complex numbers, and solve equations.	1(a) 1(b) 1(c) 2(a) 2(b)	$3 - \sqrt{7}$ 17 + 28i $(6cis \frac{\pi}{12})^4$ $= 1296 cis \frac{\pi}{3}$ $= 648 + 648\sqrt{3}i$ or = 648 + 1122.4i x = 0.3989 $2x - 3 = 7^{4.5}$ x = 3177.7	A1 A1 A1 A2 A2	No alternative. No alternative. Or equivalent in rectangular form. Or equivalent. Or equivalent.	Achievement: Four of Code A including at least One of Code A1 and One of Code A2. No repeated skills.

	Achievement Criteria	Q.	Evidence	Code	Judgement	Sufficiency
Achievement with Merit	Solve more complicated equations.	3 4 5	$(\sqrt{x+5})^{2} = (2x-3)^{2}$ $4x^{2} - 13x + 4 = 0$ $x = 2.91 \text{ or } 0.344$ Checking gives just $x = 2.91$ as the only solution. $r^{3} \operatorname{cis} 3\theta = 64 \operatorname{cis} \frac{\pi}{2}$ $\sqrt[3]{64 \operatorname{cis} \frac{\pi}{2}} = \sqrt[3]{64} \operatorname{cis} (\frac{\pi}{6} + \frac{2k\pi}{3})$ 3 solutions are: $4 \operatorname{cis} \frac{\pi}{6}, 4 \operatorname{cis} \frac{5\pi}{6}, 4 \operatorname{cis} (-\frac{\pi}{2})$ $[z - (3 + 2i)][z - (3 - 2i)]$ $= [(z - 3) - 2i)][(z - 3) + 2i)]$ $= (z - 3)^{2} - 4i^{2}$ $= z^{2} - 6z + 13$ $\frac{z^{3} - 10z^{2} + 37z + p}{z^{2} - 6z + 13}$ $= z - 4 \text{ remainder } p + 52$ Since $p + 52 = 0$, $p = -52$. Other roots: $z = 3 - 2i$, 4.	A2 M A1 A2 M	Or equivalent. Conversion to polar form. Or equivalent. Can assume <i>p</i> correct if 2 other roots given. Or equivalent.	Merit: Achievement plus Two of Code M or Three of Code M.

	Achievement Criteria	No.	Evidence	Code	Judgement	Sufficiency
Achievement with Excellence	Solve problem(s) involving real or complex numbers.	6	Let $z = x + yi$ $\frac{z+i}{z-i}$ $= \frac{x + (y+1)i}{x + (y-1)i} x \neq 0, y \neq 1$ $= \frac{x + (y+1)i}{x + (y-1)i} \cdot \frac{x - (y-1)i}{x - (y-1)i}$ $= \frac{x^2 + (y+1)(y-1) + [x(y+1) - x(y-1)]i}{x^2 + (y-1)^2}$ If $\frac{z+i}{z-i}$ is purely imaginary, its real part is equal to zero. $x^2 + (y+1)(y-1) = 0$ $x^2 + y^2 = 1, x \neq 0, y \neq 1$ Hence locus is a circle with centre (0, 0) and radius 1, excluding the point (0, 1).	A M E	Or equivalent. Award E to students who do not provide exclusion.	Excellence: Merit plus code E.

Judgement Statement

Calculus: Manipulate real and complex numbers, and solve equations (90638)

Achievement	Achievement with Merit	Achievement with Excellence		
Manipulate real and complex numbers, and solve equations.	Solve more complicated equations.	Solve problem(s) involving real or complex numbers.		
$4 \times A$	Achievement plus	Merit <i>plus</i>		
including at least $1 \times A1$ and $1 \times A2$	$2 \times M$	1×E		
No repeated skills	OR			
	$3 \times M$			